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The stability of laminar boundary layers at separation 

By T. H. HUGHES? AND W. H. REID 
Department of Mathematics, The University of Chicago 

(Received 18 January 1965) 

The effect of an adverse pressure gradient on the stability of a laminar bound- 
ary layer is considered in the limiting case when the skin friction at the wall 
vanishes, i.e. when U‘(0) = 0. Such flows are not absolutely unstable as might 
have been expected but have a minimum critical Reynolds number of the order 
of 25. General results are given for the asymptotic behaviour of both the upper 
and lower branches of the neutral curve and a complete neutral curve is obtained 
for Pohlhausen’s simple fourth-degree polynomial profile at separation. 

1. Introduction 
The effect of a pressure gradient on the stability of laminar boundary layers 

has been widely studied and the destabilizing effect of an adverse pressure 
gradient is well known. In  none of the existing calculations, however, has the 
limiting case of a boundary layer at separation been considered.$ This limiting 
case would appear to be unusual for at least two reasons: first, because there is 
a substantial change in the structure of the characteristic equation when 

and, secondly, because the simple formulas given by Lin (1955, p. 83) for esti- 
mating minimum critical Reynolds numbers clearly fail in such a case. In  fact, 
these formulas would suggest that the minimum critical Reynolds number for 
such flows is actually zero and hence that they are absolutely unstable. The 
present calculations were undertaken, therefore, to examine just this possibility. 
Although detailed calculations have been made for only one particular velocity 
profile, the results are likely to be typical of all boundary-layer profiles that are 
monotonically increasing with U’(0) = 0. Such profiles necessarily have an 
inflexion point in the interval 0 < y < co and are therefore unstable in the 
inviscid limit. 

Perhaps the most realistic basic flow for the present purposes would have been 
Thwaites’s (1949) little-known but exact solution of the Falkner-Skan equation 
for p = - 1. The analytical form of this profile is sufficiently complicated, how- 
ever, to render it somewhat unsuitable for the purposes of a stability calculation. 
Since the primary purpose of the present calculation was merely to illustrate 
the essential stability characteristics of boundary layers at separation, it was 
felt that even a crude approximation to the velocity profile would be entirely 

t Present address : Applied Mathematics Division, Argonne National Laboratory. 
$ Except for an incomplete calculation by Pretsch (1941) based on the Falkner-Skan 

U’(0) = 0 

velocity profile a t  separation. 
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adequate, and it was decided therefore to use the simple Pohlhausen fourth- 
degree polynomial profile. At separation the parameter A of the Pohlhausen 
P4 profiles has the value - 12 and the velocity distribution is then given by (see, 
for example, Goldstein 1938) 

I 6-8y+3y2) for 0 < y f 1, 

for 1 < y < c o .  

In  the following sections, therefore, we shall consider the solution of the Orr- 
Sommerfeld equation within the framework of the usual asymptotic approxima- 
tions for the velocity distribution (1.1). In  a more realistic treatment of this 
problem, however, one would have to allow not only for the non-parallel character 
of the basic flow near separation but also for the stream-wise variation of both 
components of the basic velocity. 

2. The solution of the inviscid equation 
In  the solution of the Orr-Sommerfeld equation for flows of the boundary- 

layer type it is necessary to obtain approximations to the two solutions that 
remain bounded as y -+ + co. One of the required approximations has an essen- 
tially inviscid character, being merely the solution of the inviscid equation 

(U-c)($”-a2$)-UU”$ = 0 (2.1) 

that remains bounded as y --f + 00. We shall denote such a solution of equation 
(2.1) by @(y) and, for convenience, normalize it so that @(yc) = 1. For the velo- 
city profile (l.l),  the relevant ‘outer’ solution of equation (3.1) is simply 

@(y) = Ke-ay for 1 < y < co, (2.2) 

where the constant K may depend on both a and c. 

linear combination of the Tollmien solutions 
On the interval 0 < y < 1, @(y) can most conveniently be expressed as a, 

$a(?/) = (Y - YJ P2Y -9J (2.3) 

and # B ( Y )  = P*(Y - Yc) + ( u:/ $A(!/)  1% (Y - Ye), (2.4) 

where Pa and PB are power series in y - yc, the leading coefficients of which are 
unity, and, to be definite, we suppose that q5B contains no multiple of $a. Thus, 

(2.5) 
we have 

where the constant A may also depend on both 01 and c. The requirement that 
@ and CD’ be continuous at y = 1 leads to two inhomogeneous equations for the 
constants A and K which can be solved to give 

@(Y) = A$A(Y) + $B(Y) ,  

where we have used the fact that the Wronskian W($A,  $B) = - 1. The solu- 
tion (2.5) has a logarithmic branch point at  y = yc and, as a more detailed in- 
vestigation shows, i t  provides a valid asymptotic approximation only in the 
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sector -:7r < arg ( y  -y,) < +T of the complex y-plane excluding the im- 
mediate neighbourhood of yc. For the present purposes, however, it is not neces- 
sary to consider the viscous corrections to #B. 

In  the actual computation of @(y), #A(y) and the regular part of # B ( y )  were 
obtained by numerical integration and the power series P,(y - y,.) and PB(y - y,) 
serve only to provide the necessary initial data. This procedure is identical with 
the one described by Hughes & Reid (1965; hereinafter referred to as I) for the 
asymptotic suction profile and need not be described further here. 

3. The solution of the characteristic equation 
An approximation to the second bounded solution of the Orr-Sommerfeld 

equation can be obtained from the equation qP' = iaRUA(y - y,.) qYf, and the solu- 
tion of this equation that remains bounded as y --f + co can be written in the form 

where = (y- y,)/e, E = (iaRU1,)-4, and co, denotes a path of integration that 
tends to infinity in the sector (arg 51 < +T, and so makes a negligible contribution 
on the interval 1 6 y 6 00. 
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FIGURE 1. The graphical solution of the characteristic equation (3.2) for the velocity 
profile (1.1). The open circle corresponds to the minimum critical Reynolds number 
and the solid circle corresponds to the asymptote to the lower branch of the neutral curve. 
The Tietjens function is from Miles (1960). 
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The required approximation to the general solution of the Orr-Sommerfeld 
equation is thus a linear combination of @(y) and +&). When the boundary con- 
ditions + ( O )  = $’(O) = 0 are applied to this solution, the characteristic equation 
is found to be of the form 

E(a, c) = F(z) ,  where E(E,  c) = - @(O)/y,@’(O) (3.2) 

and P(z) is the Tietjens function with argument x = (aRU;)&y,. This result can 
also be obtained by allowing U’(0) --f 0 in the usual form of the characteristic 
equation [cf. I, equations (4.1) and (4.2)]. This characteristic equation was then 
solved by the usual graphical procedure in which the real and imaginary parts 
of both sides of equation (3.2) are plotted on the same graph as shown in figure 1. 
In  evaluating the inviscid part of the characteristic equation, it was found to 
be more convenient to evaluate E(a, c )  for assigned values of yc rather than for 
assigned values of c as is usually done. 

a,, = 04038 
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FIGURE 2. The curve of neutral stability for the velocity profile (1.1).  

For this separating profile it was found necessary to use values of F(z )  that 
lie below the real axis and correspond to z < zo (=  2.297). In  fact, the point 
where R reaches its minimum value and the point corresponding to the asymp- 
tote to the lower branch of the neutral curve both fall below the real axis. In 
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spite of these somewhat unusual features of the solution, the curve of neutral 
stability shown in figure 2 is essentially similar to the neutral curves found for 
boundary-layer flows having an inflexion point but with U’(0)  > 0. The relation- 
ship between a and c along the neutral curve is shown in figure 3. 
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FIGURE 3. The relationship between the wave-number ccl and the 
wave-speed c along the neutral curve. 

To facilitate the comparison of these results with those for other boundary- 
layer profiles, we have changed the characteristic length scale from L,, which has 
only been defined implicitly by equation (l.l), to the displacement thickness 8,. 
The wave-number cxl and Reynolds number R, (based on 8,) are then related to a 
and R (based on L,) by 

a1 = $a and R, = QR. (3.3) 

The loop in the Tietjens function shown in figure 1 causes the small loop in the 
(a,c)-curve and also causes the concave bend along the upper branch of the 
neutral curve just before that branch tends to its limiting value. These peculiari- 
ties of the solution would not appear to have any physical significance but are 
most likely due to a slight inadequacy in the inviscid approximation @(y). 

4. The asymptotes to the curve of neutral stability 
To complete the discussion of the neutral curve for this problem it is necessary 

to obtain its asymptotic behaviour as R -+ 00. Since the limiting behaviour of 
the upper and lower branches are quite different, the two limits must be treated 
separately. Along the upper branch we approach a purely inviscid limit (as 
would be expected for a profile having an inflexion point) and this limit does not 
depend in any essential way on the fact that U’(0) = 0. Along the lower branch, 
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however, the critical point approaches the boundary as R --f co and viscous 
effects never become negligible. The asymptote to this branch of the neutral 
curve emerges in a somewhat unusual way and does depend critically on the 
vanishing of U’(0). 

T h e  limiting inviscid solution 

To determine the asymptotic behaviour of the upper branch of the neutral 
curve it is first necessary to obtain the limiting inviscid solution. According to 
the usual purely inviscid analysis of the stability of boundary-layer flows (see, 
for example, Lin 1955, §8.2), if the velocity profile has an inflexion point, then 
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FIGURE 4. The velocity profile (left) and the limiting inviscid solution (right). 

the flow is unstable for a non-zero range of the wave-number 01. This range of a 
is bounded by the neutral state a = as > 0 and cs = U(y,), where U(y,) = 0 
and ci = 0. As R -+ co along the upper branch of the neutral curve, the limiting 
inviscid solution must emerge, therefore, as the solution of the inviscid equation 
that (i) vanishes at y = 0, (ii) is regular at the critical point, and (iii) remains 
bounded as y + + co. 

The velocity profile (1.1) has an inflexion point at  y, = 4 and at that point 
c, = U(y,) = #-. The condition (iii) above is automatically satisfied by the 
matching conditions (2.6) and the condition (ii) is satisfied provided U(yJ = 0, 
i.e. provided yc = y, = $ and c = c, = 93. The required inviscid solution is thus 
one of the family of solutions given by 

where P,(y - y,) is the regular part of $,(y). Finally, as must be chosen to satisfy 
the condition (i). By computing @ ( O )  for a range of values of a and then inter- 
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polating for a,, it  was found that the parameters of the solution must have the 

a, = 2-00708, A = 1.5358, K = 4.6595, @i(O) = 4.0051. (4-2) 

The limiting inviscid solution @,(y) found in this way is shown in figure 4. 
It is interesting to note, however, that this inviscid limit also emerges in a 

completely natural way from the full viscous calculation described in $3. For 
as x -+ + co, F(z )  -+ 0 and we must therefore find the values of a and c for which 
E(a,c) = 0. This can easily be done by finding the lines a = constant and 
c = constant in figure 1 that pass through the origin. The required c-line is simply 
the real axis and corresponds to yc = y,  = 4. For velocity profiles having more 
than one critical point, the required eigenfunction in the inviscid limit is no 
longer regular and, since the value of c, is not known a priori, this latter method 
of solution may be useful in such cases. 

The asymptotic behaviour of the upper branch of the neutral curve 

For flows with an inflexion point, Lin (1945, p. 282) has shown that along the 
upper branch of the neutral curve R N const. (a - as)-2 as a -+ a,. In  the deriva- 
tion of this result, however, it was assumed that a, and c, were both small. The 
value of the constant appearing in this result is thus only an approximate one 
and, in fact, it  formally vanishes if U’(0) = 0. To avoid these difficulties, it  is 
necessary to obtain the precise behaviour of @(O)/@’(O) to at  least first order in 
a - a, and c - c, as a -+ a, and c + c,. This could easily be done by a slight modi- 
fication of the discussion given in I ,  $4  and the results so obtained would remain 
valid whether U’(0) vanished or not. It is possible to do rather more, however, 
with no additional complications; namely, to obtain the behaviour of @(y)  itself 
to first order in a - a, and c - c,. 

For this purpose it is necessary to consider a second solution, Y , ( y )  say, of 
the limiting inviscid equation. A standard form of this solution can conveniently 
be defined by 

Y A Y )  = @S(Y) s” {@s(Y)>-2 dY, (4.3) 
us 

and a few of its properties may be briefly noted: 

W(@,,Y,) = 1, (4.4) 

y?,(O) = - l / @ X O ) >  Y,(Y,) = 0, W Y , )  = 1/@,(Y,)7 (4.5) 

and Y , ( y )  N easu/2a,K as y + co. (4.6) 

Consider now an expansion of @(y) in powers of both a - a, and c - c, of the 
form 

(4.7) 

where and Q2 must then satisfy the equations 

(u-c,)(@‘;-a:@l)- U”@., = 2as(U-c,)@>, (4.8) 

( u - c,) (a; - a: 02) - U” (4.9) and 

These equations must be solved subject to the conditions that and remain 
bounded as y 3 co and, to conform to our normalization convention, that Q1 

= U”( u - c,)-1 Qs. 
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and @, vanish at yc. To the present order of approximation, this last condition is 
equivalent to the requirement that Q1 and Q2 vanish at y,. Thus, we have 

and 

(4.10) 

In  equation (4.11) the path of integration for the first integral must lie below the 
critical point ys; the integrand of the second integral, however, is regular at  
y,. At, y = 0, Q1 and have the values 

and are thus independent of Ys. It may be noticed that QI(O) is real but that Q2(0) 
is complex with real and imaginary parts given by 

and 
(4.13) 

where B denotes Lhe principal value of the integral. 
These results can be used not only to obtain the asymptotic behaviour of 

the upper branch of the neutral curve as R -+ 00 but also to demonstrate the 
existence, near the neutral mode @,, of a neighbouring unstable solution. For 
this latter purpose we consider the inviscid form of the characteristic equation 
(3.2) and immediately find that 

(a-a,) as c + c, and a+ a,. (4.14) @ l ( O )  @W) 
1@2(0)l2 

C-C,-+ - 

This result is clearly equivalent to Lin's formula (1955, p. 123) for (8c/8a2),,,. 
In  particular, the imaginary part of equation (4.14) is 

(4.15) 

where the sign of the coefficient in this expression is determined by the sign 
of U"'(y,). If U'"(y,) < 0, as it is in the present problem, then ci 

To obtain the asymptotic behaviour of the upper branch of the neutral curve 
we must consider the asymptotic form of the characteristic equation (3.2) as 
R + 03 with ci = 0 

0 when a 2 a,. 

1 &i 
(@I(()) (a  - a,) + Q2(0) (c - c,) + . . .> N __ 2% ' (4.16) -~ 

Ys @XO) 

where z = (aRUZ)*y, -+ (a,RU;)*y,(l + O(a- a,, c - c,)}. (4.17) 

By eliminating x between the real and imaginary parts of equation (4.16), we 
obtain 

(4.18) 
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and the imaginary part itself then gives 

(4.19) 

These results remain valid whether U’(0) vanishes or not, but they are not valid 
if U”’(ys) vanishes. For a discussion of the purely inviscid problems when 
U”(y,) = 0, see Lin (1945, p. 224). 

For the particular velocity distribution (1 .  l), we obtain the following numerical 
values for the integrals appearing in equations (4.12) and (4.13) 

00 U” IOm (D.2,dy = 0-88360 and @;dy = - 5.9895. (4.20) 

From these results we then have 

(4.21) 
c - C, -+ 0.4963 - a,) 

and R, - 0.07602 (c- c,)-~ or R, N 0.3087 (als - 

The asymptotic behaviour of the lower branch of the neutral curve 

Along the lower branch of the neutral curve, a --f 0 and we can therefore use the 
method of approximation described in I, $4. In  terms of Q(y), defined by equa- 
tion (4.4) of I, the characteristic equation (3.2) becomes 

(C2/Y,)  Q(0) = w 9 7  (4.23) 

where 

For the present purposes it is sufficient to consider only the one term 

Q(0) = l/a( 1 - c)2+ Q,(O) + Q2,(0) a + . I . .  (4.23) 

1 u-c 
Q,(O) = -~ (1-Cl2 0 ( (1-.)2- (PJ2) (4.24) 

where the path of integration must lie below the critical point. The imaginary 
part of Q,(O) is given by the usual expression 

Q,,(O) = -7ru;/u;3, (4.25) 

but the real part of Qo(0) cannot, in general, be evaluated explicitly. The be- 
haviour of Qo,(0) for small values of c, however, depends very critically on 
whether U’(0) vanishes or not. If U’(0) = 0, then it can be shown that Qo,(0) = O( 1)  
as c -+ 0 and this is sufficient for the present purposes. From equation (4.25) we 
then have 

(4.26) 

The imaginary part of equation (4.22) then shows that 

Z $ ( x )  -+ -in- as c -+ 0 (4.27) 

and this condition fixes the point in figure 1 corresponding to the lower asymp- 
tote. From Miles’s (1960) tables of the Tietjens function, we find that the value 
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of z for which equation (4.27) is satisfied is z* = 0-488 and that Fr(z*) = 1.580. 
From the real part of equation (4.22) we have 

c8 + (2/U,“)& C(Z*) a (4.28) 

and the asymptote to the lower branch of the neutral curve is then given by 

(4.29) 

The power of cz appearing in equation (4.29) differs from the usual boundary- 
layer results and can be traced to the vanishing of U’(0). For the particular 
velocity distribution (1.1) we have 

c* + l.Gla, and l2$ N 0-309a78. (4.30) 

5. Concluding remarks 
In  spite of the rather special nature of the velocity profile considered in this 

paper, it would appear that the stability characteristics of a boundary layer at 
separation have been sufficiently well approximated to warrant a few general 
conclusions. On the basis of the usual asymptotic theory, it can be concluded 
that such a flow has a non-zero minimum critical Reynolds number and that the 
value of Rmin, though comparatively small, is not so small as to seriously violate 
the basic assumptions of the theory. The curve of neutral stability has the general 
form that one would expect of a flow having an inflexion point, and only the 
asymptote to its lower branch depends in any essential way on the fact that 

One minor defect in the present analysis, however, should be briefly mentioned. 
This concerns the asymptotic behaviour of the lower branch of the neutral curve 
which was obtained in $ 4  from the characteristic equation (3.2). As c -+ 0, 
however, there are two critical points at  (2c/U,”)g which coalesce to form a 
single turning point of the second order and the viscous solution (3.1) is no longer 
valid in this limiting situation. To obtain an asymptotic approximation to q5&) 
that is valid in a domain containing both critical points and remains valid 
as c -+ 0 it would be necessary to use a comparison equation of the Weber rather 
than the Airy type. Furthermore, since c -+ 0 like (aR)-&, the relevant Weber 
equation can be transformed to a parameter-free form, thus precluding further 
simplification in terms of either Airy or exponential functions. Although such 
refinements in the analysis are of some mathematical interest, it  seems unlikely 
that they would make more than slight quantitative differences to the present 
results. 

U’(0)  = 0. 
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